Router - Load Balancing, Fallbacks
LiteLLM manages:
- Load-balance across multiple deployments (e.g. Azure/OpenAI)
- Prioritizing important requests to ensure they don't fail (i.e. Queueing)
- Basic reliability logic - cooldowns, fallbacks, timeouts and retries (fixed + exponential backoff) across multiple deployments/providers.
In production, litellm supports using Redis as a way to track cooldown server and usage (managing tpm/rpm limits).
If you want a server to load balance across different LLM APIs, use our OpenAI Proxy Server
Load Balancing​
(s/o @paulpierre and sweep proxy for their contributions to this implementation) See Code
Quick Start​
from litellm import Router
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # model alias
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2", # actual model name
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
}
}]
router = Router(model_list=model_list)
# openai.ChatCompletion.create replacement
response = await router.acompletion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}])
print(response)
Available Endpoints​
router.completion()
- chat completions endpoint to call 100+ LLMsrouter.acompletion()
- async chat completion callsrouter.embeddings()
- embedding endpoint for Azure, OpenAI, Huggingface endpointsrouter.aembeddings()
- async embeddings callsrouter.text_completion()
- completion calls in the old OpenAI/v1/completions
endpoint formatrouter.atext_completion()
- async text completion callsrouter.image_generation()
- completion calls in OpenAI/v1/images/generations
endpoint formatrouter.aimage_generation()
- async image generation calls
Advanced​
Routing Strategies - Weighted Pick, Rate Limit Aware, Least Busy, Latency Based​
Router provides 4 strategies for routing your calls across multiple deployments:
- Latency-Based
- (Default) Weighted Pick
- Rate-Limit Aware
- Least-Busy
Picks the deployment with the lowest response time.
It caches, and updates the response times for deployments based on when a request was sent and received from a deployment.
from litellm import Router
import asyncio
model_list = [{ ... }]
# init router
router = Router(model_list=model_list, routing_strategy="latency-based-routing") # 👈 set routing strategy
## CALL 1+2
tasks = []
response = None
final_response = None
for _ in range(2):
tasks.append(router.acompletion(model=model, messages=messages))
response = await asyncio.gather(*tasks)
if response is not None:
## CALL 3
await asyncio.sleep(1) # let the cache update happen
picked_deployment = router.lowestlatency_logger.get_available_deployments(
model_group=model, healthy_deployments=router.healthy_deployments
)
final_response = await router.acompletion(model=model, messages=messages)
print(f"min deployment id: {picked_deployment}")
print(f"model id: {final_response._hidden_params['model_id']}")
assert (
final_response._hidden_params["model_id"]
== picked_deployment["model_info"]["id"]
)
Set Time Window​
Set time window for how far back to consider when averaging latency for a deployment.
In Router
router = Router(..., routing_strategy_args={"ttl": 10})
In Proxy
router_settings:
routing_strategy_args: {"ttl": 10}
Default Picks a deployment based on the provided Requests per minute (rpm) or Tokens per minute (tpm)
If rpm
or tpm
is not provided, it randomly picks a deployment
from litellm import Router
import asyncio
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # model alias
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2", # actual model name
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"rpm": 900, # requests per minute for this API
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
"rpm": 10,
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
"rpm": 10,
}
}]
# init router
router = Router(model_list=model_list, routing_strategy="simple-shuffle")
async def router_acompletion():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
)
print(response)
return response
asyncio.run(router_acompletion())
This will route to the deployment with the lowest TPM usage for that minute.
In production, we use Redis to track usage (TPM/RPM) across multiple deployments.
If you pass in the deployment's tpm/rpm limits, this will also check against that, and filter out any who's limits would be exceeded.
For Azure, your RPM = TPM/6.
from litellm import Router
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # model alias
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2", # actual model name
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 100000,
"rpm": 10000,
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 100000,
"rpm": 1000,
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 100000,
"rpm": 1000,
}]
router = Router(model_list=model_list,
redis_host=os.environ["REDIS_HOST"],
redis_password=os.environ["REDIS_PASSWORD"],
redis_port=os.environ["REDIS_PORT"],
routing_strategy="usage-based-routing")
response = await router.acompletion(model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
print(response)
Picks a deployment with the least number of ongoing calls, it's handling.
from litellm import Router
import asyncio
model_list = [{ # list of model deployments
"model_name": "gpt-3.5-turbo", # model alias
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2", # actual model name
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": os.getenv("AZURE_API_KEY"),
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE"),
}
}, {
"model_name": "gpt-3.5-turbo",
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
}
}]
# init router
router = Router(model_list=model_list, routing_strategy="least-busy")
async def router_acompletion():
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
)
print(response)
return response
asyncio.run(router_acompletion())
Basic Reliability​
Timeouts​
The timeout set in router is for the entire length of the call, and is passed down to the completion() call level as well.
from litellm import Router
model_list = [{...}]
router = Router(model_list=model_list,
timeout=30) # raise timeout error if call takes > 30s
print(response)
Cooldowns​
Set the limit for how many calls a model is allowed to fail in a minute, before being cooled down for a minute.
from litellm import Router
model_list = [{...}]
router = Router(model_list=model_list,
allowed_fails=1) # cooldown model if it fails > 1 call in a minute.
user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]
# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)
print(f"response: {response}")
Retries​
For both async + sync functions, we support retrying failed requests.
For RateLimitError we implement exponential backoffs
For generic errors, we retry immediately
Here's a quick look at how we can set num_retries = 3
:
from litellm import Router
model_list = [{...}]
router = Router(model_list=model_list,
num_retries=3)
user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]
# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)
print(f"response: {response}")
We also support setting minimum time to wait before retrying a failed request. This is via the retry_after
param.
from litellm import Router
model_list = [{...}]
router = Router(model_list=model_list,
num_retries=3, retry_after=5) # waits min 5s before retrying request
user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]
# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)
print(f"response: {response}")
Fallbacks​
If a call fails after num_retries, fall back to another model group.
If the error is a context window exceeded error, fall back to a larger model group (if given).
from litellm import Router
model_list = [
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{ # list of model deployments
"model_name": "azure/gpt-3.5-turbo-context-fallback", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-v-2",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "azure/gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/chatgpt-functioncalling",
"api_key": "bad-key",
"api_version": os.getenv("AZURE_API_VERSION"),
"api_base": os.getenv("AZURE_API_BASE")
},
"tpm": 240000,
"rpm": 1800
},
{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
},
{
"model_name": "gpt-3.5-turbo-16k", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "gpt-3.5-turbo-16k",
"api_key": os.getenv("OPENAI_API_KEY"),
},
"tpm": 1000000,
"rpm": 9000
}
]
router = Router(model_list=model_list,
fallbacks=[{"azure/gpt-3.5-turbo": ["gpt-3.5-turbo"]}],
context_window_fallbacks=[{"azure/gpt-3.5-turbo-context-fallback": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}],
set_verbose=True)
user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]
# normal fallback call
response = router.completion(model="azure/gpt-3.5-turbo", messages=messages)
# context window fallback call
response = router.completion(model="azure/gpt-3.5-turbo-context-fallback", messages=messages)
print(f"response: {response}")
Caching​
In production, we recommend using a Redis cache. For quickly testing things locally, we also support simple in-memory caching.
In-memory Cache
router = Router(model_list=model_list,
cache_responses=True)
print(response)
Redis Cache
router = Router(model_list=model_list,
redis_host=os.getenv("REDIS_HOST"),
redis_password=os.getenv("REDIS_PASSWORD"),
redis_port=os.getenv("REDIS_PORT"),
cache_responses=True)
print(response)
Pass in Redis URL, additional kwargs
router = Router(model_list: Optional[list] = None,
## CACHING ##
redis_url=os.getenv("REDIS_URL")",
cache_kwargs= {}, # additional kwargs to pass to RedisCache (see caching.py)
cache_responses=True)
Caching across model groups​
If you want to cache across 2 different model groups (e.g. azure deployments, and openai), use caching groups.
import litellm, asyncio, time
from litellm import Router
# set os env
os.environ["OPENAI_API_KEY"] = ""
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
async def test_acompletion_caching_on_router_caching_groups():
# tests acompletion + caching on router
try:
litellm.set_verbose = True
model_list = [
{
"model_name": "openai-gpt-3.5-turbo",
"litellm_params": {
"model": "gpt-3.5-turbo-0613",
"api_key": os.getenv("OPENAI_API_KEY"),
},
},
{
"model_name": "azure-gpt-3.5-turbo",
"litellm_params": {
"model": "azure/chatgpt-v-2",
"api_key": os.getenv("AZURE_API_KEY"),
"api_base": os.getenv("AZURE_API_BASE"),
"api_version": os.getenv("AZURE_API_VERSION")
},
}
]
messages = [
{"role": "user", "content": f"write a one sentence poem {time.time()}?"}
]
start_time = time.time()
router = Router(model_list=model_list,
cache_responses=True,
caching_groups=[("openai-gpt-3.5-turbo", "azure-gpt-3.5-turbo")])
response1 = await router.acompletion(model="openai-gpt-3.5-turbo", messages=messages, temperature=1)
print(f"response1: {response1}")
await asyncio.sleep(1) # add cache is async, async sleep for cache to get set
response2 = await router.acompletion(model="azure-gpt-3.5-turbo", messages=messages, temperature=1)
assert response1.id == response2.id
assert len(response1.choices[0].message.content) > 0
assert response1.choices[0].message.content == response2.choices[0].message.content
except Exception as e:
traceback.print_exc()
asyncio.run(test_acompletion_caching_on_router_caching_groups())
Default litellm.completion/embedding params​
You can also set default params for litellm completion/embedding calls. Here's how to do that:
from litellm import Router
fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"}
router = Router(model_list=model_list,
default_litellm_params={"context_window_fallback_dict": fallback_dict})
user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]
# normal call
response = router.completion(model="gpt-3.5-turbo", messages=messages)
print(f"response: {response}")
Deploy Router​
If you want a server to load balance across different LLM APIs, use our OpenAI Proxy Server
Init Params for the litellm.Router​
def __init__(
model_list: Optional[list] = None,
## CACHING ##
redis_url: Optional[str] = None,
redis_host: Optional[str] = None,
redis_port: Optional[int] = None,
redis_password: Optional[str] = None,
cache_responses: Optional[bool] = False,
cache_kwargs: dict = {}, # additional kwargs to pass to RedisCache (see caching.py)
caching_groups: Optional[
List[tuple]
] = None, # if you want to cache across model groups
client_ttl: int = 3600, # ttl for cached clients - will re-initialize after this time in seconds
## RELIABILITY ##
num_retries: int = 0,
timeout: Optional[float] = None,
default_litellm_params={}, # default params for Router.chat.completion.create
set_verbose: bool = False,
fallbacks: List = [],
allowed_fails: Optional[int] = None,
context_window_fallbacks: List = [],
model_group_alias: Optional[dict] = {},
retry_after: int = 0, # min time to wait before retrying a failed request
routing_strategy: Literal[
"simple-shuffle",
"least-busy",
"usage-based-routing",
"latency-based-routing",
] = "simple-shuffle",
):